Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Lett ; 313: 77-90, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31220554

RESUMO

Quetiapine is a common atypical antipsychotic used to treat mental disorders such as schizophrenia, bipolar disorder, and major depressive disorder. There has been increasing number of reports describing its cardiotoxicity. However, the molecular mechanisms underlying quetiapine-induced myocardial injury remain largely unknown. Herein, we reported a novel cell death type, quetiapine-induced necroptosis, which accounted for quetiapine cardiotoxicity in mice and proposed novel therapeutic strategies. Quetiapine-treated hearts showed inflammatory infiltration and evident fibrosis after 21-day continuous injection. The specific increases of protein levels of RIP3, MLKL and the phosphorylation of MLKL showed that quetiapine induced necroptotic cell death both in vivo and in vitro. Pharmacologic blockade of necroptosis using its specific inhibitor Necrostatin-1 attenuated quetiapine-induced myocardial injury in mice. In addition, quetiapine imbalanced the endocannabinoid system and caused opposing effects on two cannabinoid receptors (CB1R and CB2R). Specific antagonists of CB1R (AM 281, Rimonabant), but not its agonist ACEA significantly ameliorated the heart histopathology induced by chronic quetiapine exposure. By contrast, specific agonists of CB2R (JWH-133, AM 1241), but not its antagonist AM 630 exerted beneficial roles against quetiapine cardiotoxicity. The protective agents (AM 281, Rimonabant, AM 1241, and JWH-133) consistently inactivated the quetiapine-induced necroptosis signaling. Quetiapine bidirectionally regulates cannabinoid receptors and induces myocardial necroptosis, leading to cardiac toxic effects. Therefore, pharmacologic inhibition of CB1R or activation of CB2R represents promising therapeutic strategies against quetiapine-induced cardiotoxicity.


Assuntos
Antipsicóticos/toxicidade , Apoptose/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/toxicidade , Antagonistas de Receptores de Canabinoides/toxicidade , Cardiomiopatias/induzido quimicamente , Miócitos Cardíacos/efeitos dos fármacos , Fumarato de Quetiapina/toxicidade , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Cardiotoxicidade , Linhagem Celular , Endocanabinoides/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Necrose , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Pharmacology ; 103(3-4): 151-158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30673678

RESUMO

The endocannabinoid and serotonin (5-HT) systems have key roles in the regulation of several physiological functions such as motor activity and food intake but also in the development of psychiatric disorders. Here we tested the hypothesis, whether blockade of serotonin 2C (5-HT2C) receptors prevents the reduced locomotor activity and other behavioral effects caused by a cannabinoid 1 (CB1) receptor antagonist. As a pretreatment, we administered SB-242084 (1 mg/kg, ip.), a 5-HT2C receptor antagonist or vehicle (VEH) followed by the treatment with AM-251 (5 or 10 mg/kg, ip.), a CB1 receptor antagonist or VEH. The effects of the two drugs alone or in co-administration were investigated in social interaction (SI) and elevated plus maze (EPM) tests in male Wistar rats. Our results show that AM-251 decreased the time spent with rearing in the SI test and decreased locomotor activity in EPM test. In contrast, SB-242084 produced increased locomotor activity in SI test and evoked anxiolytic-like effect in both SI and EPM tests. When applied the drugs in combination, these behavioral effects of AM-251 were moderated by SB-242084. Based on these findings, we conclude that certain unwanted behavioral effects of CB1 receptor antagonists could be prevented by pretreatment with 5-HT2C receptor antagonists.


Assuntos
Aminopiridinas/farmacologia , Comportamento Animal/efeitos dos fármacos , Antagonistas de Receptores de Canabinoides/farmacologia , Indóis/farmacologia , Locomoção/efeitos dos fármacos , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor 5-HT2C de Serotonina/efeitos dos fármacos , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Antagonistas de Receptores de Canabinoides/toxicidade , Comportamento Exploratório/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Piperidinas/toxicidade , Pirazóis/toxicidade , Ratos Wistar , Receptor CB1 de Canabinoide/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Comportamento Social
3.
ChemMedChem ; 13(11): 1102-1114, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29575721

RESUMO

In recent years, cannabinoid type 2 receptors (CB2 R) have emerged as promising therapeutic targets in a wide variety of diseases. Selective ligands of CB2 R are devoid of the psychoactive effects typically observed for CB1 R ligands. Based on our recent studies on a class of pyridazinone 4-carboxamides, further structural modifications of the pyridazinone core were made to better investigate the structure-activity relationships for this promising scaffold with the aim to develop potent CB2 R ligands. In binding assays, two of the new synthesized compounds [6-(3,4-dichlorophenyl)-2-(4-fluorobenzyl)-cis-N-(4-methylcyclohexyl)-3-oxo-2,3-dihydropyridazine-4-carboxamide (2) and 6-(4-chloro-3-methylphenyl)-cis-N-(4-methylcyclohexyl)-3-oxo-2-pentyl-2,3-dihydropyridazine-4-carboxamide (22)] showed high CB2 R affinity, with Ki values of 2.1 and 1.6 nm, respectively. In addition, functional assays of these compounds and other new active related derivatives revealed their pharmacological profiles as CB2 R inverse agonists. Compound 22 displayed the highest CB2 R selectivity and potency, presenting a favorable in silico pharmacokinetic profile. Furthermore, a molecular modeling study revealed how 22 produces inverse agonism through blocking the movement of the toggle-switch residue, W6.48.


Assuntos
Antagonistas de Receptores de Canabinoides/farmacologia , Piridazinas/farmacologia , Receptor CB2 de Canabinoide/metabolismo , Animais , Benzoxazinas/antagonistas & inibidores , Benzoxazinas/farmacologia , Sítios de Ligação , Células CHO , Antagonistas de Receptores de Canabinoides/síntese química , Antagonistas de Receptores de Canabinoides/farmacocinética , Antagonistas de Receptores de Canabinoides/toxicidade , Cricetulus , AMP Cíclico/metabolismo , Agonismo Inverso de Drogas , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Morfolinas/antagonistas & inibidores , Morfolinas/farmacologia , Naftalenos/antagonistas & inibidores , Naftalenos/farmacologia , Piridazinas/síntese química , Piridazinas/farmacocinética , Piridazinas/toxicidade , Receptor CB2 de Canabinoide/química , Relação Estrutura-Atividade
4.
Curr Protoc Neurosci ; 80: 9.59.1-9.59.10, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28678398

RESUMO

Cannabinoid-induced tetrad is a preclinical model commonly used to evaluate if a pharmacological compound is an agonist of the central type-1 cannabinoid (CB1) receptor in rodents. The tetrad is characterized by hypolocomotion, hypothermia, catalepsy, and analgesia, four phenotypes that are induced by acute administration of CB1 agonists exemplified by the prototypic cannabinoid delta-9-tetrahydrocannabinol (THC). This unit describes a standard protocol in mice to induce tetrad phenotypes with THC as reference cannabinoid. We provide typical results obtained with this procedure showing a dose effect of THC in different mouse strains. The effect of the CB1 antagonist rimonabant is also shown. This tetrad protocol is well adapted to reveal new compounds acting on CB1 receptors in vivo. © 2017 by John Wiley & Sons, Inc.


Assuntos
Agonistas de Receptores de Canabinoides/toxicidade , Catalepsia/induzido quimicamente , Modelos Animais de Doenças , Dronabinol/toxicidade , Hipotermia/induzido quimicamente , Transtornos dos Movimentos/etiologia , Animais , Antagonistas de Receptores de Canabinoides/toxicidade , Comportamento Exploratório/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Piperidinas/toxicidade , Pirazóis/toxicidade , Rimonabanto
5.
PLoS One ; 12(2): e0165363, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28151935

RESUMO

Cannabinoid CB1 antagonists have been investigated for possible treatment of e.g. obesity-related disorders. However, clinical application was halted due to their symptoms of anxiety and depression. In addition to these adverse effects, we have shown earlier that chronic treatment with the CB1 antagonist rimonabant may induce EEG-confirmed convulsive seizures. In a regulatory repeat-dose toxicity study violent episodes of "muscle spasms" were observed in Wistar rats, daily dosed with the CB1 receptor antagonist SLV326 during 5 months. The aim of the present follow-up study was to investigate whether these violent movements were of an epileptic origin. In selected SLV326-treated and control animals, EEG and behavior were monitored for 24 hours. 25% of SLV326 treated animals showed 1 to 21 EEG-confirmed generalized convulsive seizures, whereas controls were seizure-free. The behavioral seizures were typical for a limbic origin. Moreover, interictal spikes were found in 38% of treated animals. The frequency spectrum of the interictal EEG of the treated rats showed a lower theta peak frequency, as well as lower gamma power compared to the controls. These frequency changes were state-dependent: they were only found during high locomotor activity. It is concluded that long term blockade of the endogenous cannabinoid system can provoke limbic seizures in otherwise healthy rats. Additionally, SLV326 alters the frequency spectrum of the EEG when rats are highly active, suggesting effects on complex behavior and cognition.


Assuntos
Antagonistas de Receptores de Canabinoides/toxicidade , Eletroencefalografia/efeitos dos fármacos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Convulsões/induzido quimicamente , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Feminino , Masculino , Piperidinas/toxicidade , Pirazóis/toxicidade , Ratos , Ratos Wistar , Rimonabanto , Convulsões/fisiopatologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-27493155

RESUMO

BACKGROUND: Multiple studies suggest a pivotal role of the endocannabinoid system in regulating the reinforcing effects of various substances of abuse. Rimonabant, a CB1 inverse agonist found to be effective for smoking cessation, was associated with an increased risk of anxiety and depression. Here we evaluated the effects of the CB1 neutral antagonist AM4113 on the abuse-related effects of nicotine and its effects on anxiety and depressive-like behavior in rats. METHODS: Rats were trained to self-administer nicotine under a fixed-ratio 5 or progressive-ratio schedules of reinforcement. A control group was trained to self-administer food. The acute/chronic effects of AM4113 pretreatment were evaluated on nicotine taking, motivation for nicotine, and cue-, nicotine priming- and yohimbine-induced reinstatement of nicotine-seeking. The effects of AM4113 in the basal firing and bursting activity of midbrain dopamine neurons were evaluated in a separate group of animals treated with nicotine. Anxiety/depression-like effects of AM4113 and rimonabant were evaluated 24h after chronic (21 days) pretreatment (0, 1, 3, and 10mg/kg, 1/d). RESULTS: AM4113 significantly attenuated nicotine taking, motivation for nicotine, as well as cue-, priming- and stress-induced reinstatement of nicotine-seeking behavior. These effects were accompanied by a decrease of the firing and burst rates in the ventral tegmental area dopamine neurons in response to nicotine. On the other hand, AM4113 pretreatment did not have effects on operant responding for food. Importantly, AM4113 did not have effects on anxiety and showed antidepressant-like effects. CONCLUSION: Our results indicate that AM4113 could be a promising therapeutic option for the prevention of relapse to nicotine-seeking while lacking anxiety/depression-like side effects.


Assuntos
Comportamento Aditivo/tratamento farmacológico , Comportamento Animal/efeitos dos fármacos , Antagonistas de Receptores de Canabinoides/farmacologia , Mesencéfalo/efeitos dos fármacos , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Dispositivos para o Abandono do Uso de Tabaco , Tabagismo/tratamento farmacológico , Redução de Peso/efeitos dos fármacos , Animais , Ansiedade/induzido quimicamente , Ansiedade/psicologia , Comportamento Aditivo/metabolismo , Comportamento Aditivo/fisiopatologia , Comportamento Aditivo/psicologia , Antagonistas de Receptores de Canabinoides/toxicidade , Sinais (Psicologia) , Depressão/induzido quimicamente , Depressão/psicologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Relação Dose-Resposta a Droga , Agonismo Inverso de Drogas , Comportamento de Procura de Droga/efeitos dos fármacos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Mesencéfalo/metabolismo , Mesencéfalo/fisiopatologia , Motivação/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Piperidinas/toxicidade , Pirazóis/toxicidade , Ratos Long-Evans , Ratos Wistar , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto , Transdução de Sinais/efeitos dos fármacos , Natação , Fatores de Tempo , Tabagismo/metabolismo , Tabagismo/fisiopatologia , Tabagismo/psicologia
7.
Sci Rep ; 5: 14533, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26416158

RESUMO

Cannabinoid receptor 1 (CB1R) antagonists appear to be promising drugs for the treatment of obesity, however, serious side effects have hampered their clinical application. Rimonabant, the first in class CB1R antagonist, was withdrawn from the market because of psychiatric side effects. This has led to the search for more peripherally restricted CB1R antagonists, one of which is ibipinabant. However, this 3,4-diarylpyrazoline derivative showed muscle toxicity in a pre-clinical dog study with mitochondrial dysfunction. Here, we studied the molecular mechanism by which ibipinabant induces mitochondrial toxicity. We observed a strong cytotoxic potency of ibipinabant in C2C12 myoblasts. Functional characterization of mitochondria revealed increased cellular reactive oxygen species generation and a decreased ATP production capacity, without effects on the catalytic activities of mitochondrial enzyme complexes I-V or the complex specific-driven oxygen consumption. Using in silico off-target prediction modelling, combined with in vitro validation in isolated mitochondria and mitoplasts, we identified adenine nucleotide translocase (ANT)-dependent mitochondrial ADP/ATP exchange as a novel molecular mechanism underlying ibipinabant-induced toxicity. Minor structural modification of ibipinabant could abolish ANT inhibition leading to a decreased cytotoxic potency, as observed with the ibipinabant derivative CB23. Our results will be instrumental in the development of new types of safer CB1R antagonists.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Amidinas/química , Fármacos Antiobesidade/química , Antagonistas de Receptores de Canabinoides/química , Mitocôndrias/efeitos dos fármacos , Translocases Mitocondriais de ADP e ATP/antagonistas & inibidores , Pirazóis/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Amidinas/síntese química , Amidinas/toxicidade , Animais , Fármacos Antiobesidade/síntese química , Fármacos Antiobesidade/toxicidade , Antagonistas de Receptores de Canabinoides/síntese química , Antagonistas de Receptores de Canabinoides/toxicidade , Linhagem Celular , Cães , Relação Dose-Resposta a Droga , Desenho de Fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Translocases Mitocondriais de ADP e ATP/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/enzimologia , Obesidade/tratamento farmacológico , Obesidade/patologia , Consumo de Oxigênio/efeitos dos fármacos , Pirazóis/síntese química , Pirazóis/farmacologia , Pirazóis/toxicidade , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/metabolismo , Relação Estrutura-Atividade
8.
Neuropharmacology ; 99: 89-97, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26192544

RESUMO

The endocannabinoid (eCB) system is known to regulate neural, endocrine and behavioral responses to stress in adults; however there is little knowledge regarding how this system governs the development and maturation of these responses. Previous work has reported dynamic and time-specific changes in CB1 receptor expression, N-arachidonylethanolamine (AEA) content and fatty acid amide hydrolase (FAAH) activity within corticolimbic structures throughout the peri-adolescent period. To examine whether fluctuations in adolescent eCB activity contribute to the development of adult stress responsivity and emotionality, we treated male Sprague-Dawley rats daily with the CB1R antagonist, AM-251 (5 mg/kg), or vehicle between post-natal days (PND) 35-45. Following this treatment, emotional behavior, HPA axis stress reactivity and habituation to repeated restraint stress, as well as corticolimbic eCB content were examined in adulthood (PND 75). Behaviorally, AM-251-treated males exhibited more active stress-coping behavior in the forced swim test, greater risk assessment behavior in the elevated plus maze and no significant differences in general motor activity. Peri-adolescent AM-251 treatment modified corticosterone habituation to repeated restraint exposure compared to vehicle. Peri-adolescent CB1R antagonism induced moderate changes in adult corticolimbic eCB signaling, with a significant decrease in amygdalar AEA, an increase in hypothalamic AEA and an increase in prefrontal cortical CB1R expression. Together, these data indicate that peri-adolescent endocannabinoid signaling contributes to the maturation of adult neurobehavioral responses to stress.


Assuntos
Encéfalo/crescimento & desenvolvimento , Antagonistas de Receptores de Canabinoides/toxicidade , Endocanabinoides/metabolismo , Piperidinas/toxicidade , Pirazóis/toxicidade , Receptor CB1 de Canabinoide/metabolismo , Estresse Psicológico/metabolismo , Adaptação Psicológica/efeitos dos fármacos , Adaptação Psicológica/fisiologia , Hormônio Adrenocorticotrópico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Corticosterona/metabolismo , Modelos Animais de Doenças , Emoções/efeitos dos fármacos , Emoções/fisiologia , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Distribuição Aleatória , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Restrição Física , Assunção de Riscos
9.
Neurotoxicology ; 46: 12-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25447325

RESUMO

Organophosphorus anticholinesterases (OPs) elicit acute toxicity by inhibiting acetylcholinesterase (AChE), leading to acetylcholine accumulation and overstimulation of cholinergic receptors. Endocannabinoids (eCBs, e.g., arachidonoyl ethanolamide [AEA] and 2-arachidonoyl glycerol [2-AG]) are neuromodulators that regulate neurotransmission by reducing neurotransmitter release. The eCBs are degraded by the enzymes fatty acid amide hydrolase (FAAH, primarily involved in hydrolysis of AEA) and monoacylglycerol lipase (MAGL, primarily responsible for metabolism of 2-AG). We previously reported that the cannabinoid receptor agonist WIN 55,212-2 reduced cholinergic toxicity after paraoxon exposure. This study compared the effects of the cannabinoid receptor antagonist AM251 on acute toxicity following either paraoxon (PO) or chlorpyrifos oxon (CPO). CPO was more potent in vitro than PO at inhibiting AChE (≈ 2 fold), FAAH (≈ 8 fold), and MAGL (≈ 19 fold). Rats were treated with vehicle, PO (0.3 and 0.6 mg/kg, sc) or CPO (6 and 12 mg/kg, sc) and subsets treated with AM251 (3mg/kg, ip; 30 min after OP). Signs of toxicity were recorded for 4h and rats were then sacrificed. OP-treated rats showed dose-related involuntary movements, with AM251 increasing signs of toxicity with the lower dosages. PO and CPO elicited excessive secretions, but AM251 had no apparent effect with either OP. Lethality was increased by AM251 with the higher dosage of PO, but no lethality was noted with either dosage of CPO, with or without AM251. Both OPs caused extensive inhibition of hippocampal AChE and FAAH (>80-90%), but only CPO inhibited MAGL (37-50%). These results provide further evidence that eCB signaling can influence acute OP toxicity. The selective in vivo inhibition of MAGL by CPO may be important in the differential lethality noted between PO and CPO with AM251 co-administration.


Assuntos
Antagonistas de Receptores de Canabinoides/toxicidade , Clorpirifos/análogos & derivados , Inseticidas/toxicidade , Síndromes Neurotóxicas/etiologia , Paraoxon/toxicidade , Piperidinas/toxicidade , Pirazóis/toxicidade , Amidoidrolases/metabolismo , Análise de Variância , Animais , Ácidos Araquidônicos/farmacocinética , Agonistas de Receptores de Canabinoides/farmacocinética , Clorpirifos/toxicidade , Inibidores da Colinesterase/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Endocanabinoides/farmacocinética , Masculino , Monoacilglicerol Lipases/metabolismo , Síndromes Neurotóxicas/metabolismo , Alcamidas Poli-Insaturadas/farmacocinética , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Trítio/farmacocinética
10.
Neuropsychopharmacology ; 38(12): 2498-507, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23793355

RESUMO

The anti-obesity medication rimonabant, an antagonist of cannabinoid type-1 (CB(1)) receptor, was withdrawn from the market because of adverse psychiatric side effects, including a negative affective state. We investigated whether rimonabant precipitates a negative emotional state in rats withdrawn from palatable food cycling. The effects of systemic administration of rimonabant on anxiety-like behavior, food intake, body weight, and adrenocortical activation were assessed in female rats during withdrawal from chronic palatable diet cycling. The levels of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), and the CB(1) receptor mRNA and the protein in the central nucleus of the amygdala (CeA) were also investigated. Finally, the effects of microinfusion of rimonabant in the CeA on anxiety-like behavior, and food intake were assessed. Systemic administration of rimonabant precipitated anxiety-like behavior and anorexia of the regular chow diet in rats withdrawn from palatable diet cycling, independently from the degree of adrenocortical activation. These behavioral observations were accompanied by increased 2-AG, CB(1) receptor mRNA, and protein levels selectively in the CeA. Finally, rimonabant, microinfused directly into the CeA, precipitated anxiety-like behavior and anorexia. Our data show that (i) the 2-AG-CB(1) receptor system within the CeA is recruited during abstinence from palatable diet cycling as a compensatory mechanism to dampen anxiety, and (ii) rimonabant precipitates a negative emotional state by blocking the beneficial heightened 2-AG-CB(1) receptor signaling in this brain area. These findings help elucidate the link between compulsive eating and anxiety, and it will be valuable to develop better pharmacological treatments for eating disorders and obesity.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Fármacos Antiobesidade/toxicidade , Ansiedade/induzido quimicamente , Antagonistas de Receptores de Canabinoides/toxicidade , Dieta , Piperidinas/toxicidade , Pirazóis/toxicidade , Animais , Anorexia/induzido quimicamente , Anorexia/metabolismo , Fármacos Antiobesidade/administração & dosagem , Ansiedade/metabolismo , Ácidos Araquidônicos/química , Peso Corporal/efeitos dos fármacos , Antagonistas de Receptores de Canabinoides/administração & dosagem , Corticosterona/sangue , Sacarose Alimentar/administração & dosagem , Endocanabinoides/química , Feminino , Glicerídeos/química , Piperidinas/administração & dosagem , Pirazóis/administração & dosagem , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/metabolismo , Rimonabanto
11.
Chem Res Toxicol ; 26(1): 124-35, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23234359

RESUMO

The cannabinoid type 1 receptor (CB1r) antagonist rimonabant was approved in 2006 for the treatment of obesity but was withdrawn in 2008 due to serious drug-related psychiatric disorders. In vitro metabolism studies with rimonabant have revealed high levels of reactive metabolite formation, which resulted in irreversible time-dependent P450 3A4 inhibition and in covalent binding to microsomal proteins. In the present study, an in vitro approach has been used to explore whether metabolic bioactivation of rimonabant might result in cell toxicity. A panel of SV40-T-antigen-immortalized human liver derived (THLE) cells that had been transfected with vectors encoding various human cytochrome P450 enzymes (THLE-1A2, 2C9, 2C19, 2D6, and 3A4) or with an empty vector (THLE-Null) were exposed to rimonabant. Cell toxicity and covalent binding to cellular proteins were evaluated, as was metabolite formation. Rimonabant exhibited markedly potentiated dose and time dependent cytotoxicity to THLE-3A4 cells, compared to that of all other THLE cell lines. This was accompanied by high levels of covalent binding of [(14)C]-rimonabant to THLE-3A4 cell proteins (1433 pmol drug equivalents/mg protein) and the formation of several metabolites that were not generated by THLE-Null cells. These included N-aminopiperidine (NAP) and an iminium ion species. However, no toxicity was observed when THLE cells were incubated with NAP. Glutathione depletion did not alter the observed potent cell cytotoxicity of rimonabant to THLE-3A4 cells. Preincubation of THLE-3A4 cells with the cytochrome P450 3A4 inhibitor ritonavir blocked the selective toxicity of rimonabant to these cells. In addition, ritonavir pretreatment blocked the metabolism of the compound in the cells and thereby significantly decreased the covalent binding of [(14)C]-rimonabant to THLE-3A4 cell proteins. We conclude that the potent toxicity of rimonabant in THLE-3A4 cells occurs by a mechanistic sequence, which is initiated by cytochrome P450 3A4 mediated formation of a highly cytotoxic reactive iminium ion metabolite that binds covalently to cellular proteins.


Assuntos
Antagonistas de Receptores de Canabinoides/química , Iminas/química , Piperidinas/química , Pirazóis/química , Antagonistas de Receptores de Canabinoides/metabolismo , Antagonistas de Receptores de Canabinoides/toxicidade , Radioisótopos de Carbono/química , Linhagem Celular Transformada , Sobrevivência Celular/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Glutationa/metabolismo , Humanos , Íons/química , Metaboloma/efeitos dos fármacos , Piperidinas/metabolismo , Piperidinas/farmacologia , Piperidinas/toxicidade , Cianeto de Potássio/química , Cianeto de Potássio/farmacologia , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Pirazóis/metabolismo , Pirazóis/toxicidade , Rimonabanto , Ritonavir/química , Ritonavir/farmacologia
12.
Ther Drug Monit ; 34(4): 363-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22673201

RESUMO

Since the turn of the 21st century, there has been an increase in the availability and use of novel psychoactive substances (also known as "legal highs") across Europe. Currently, there is limited information available on the potential acute toxicity (harms) associated with the use of these novel psychoactive substances. There are a number of potential data sources that can provide information on the acute toxicity associated with their use: (1) user reports on Internet discussion fora; (2) subpopulation level surveys of self-reported harms/unwanted effects (3) regional or national poisons information service accesses for support on presentations to healthcare facilities relating to acute toxicity; (4) case reports/series based on self-reported use or analytically confirmed use; and (5) human volunteer studies assessing potential acute toxicological effects. Each of these data sources has its own limitations, particularly those that are based on self-reported use because there are a number of European studies that show that there is inconsistency in the substance(s) in the "drug" that an individual uses. However, by using a multilayered approach of combining different sources, it is possible to reduce the overall impact of the limitations of any one individual data source. In this review article, we will combine information from these different data sources to describe the pattern of acute toxicity associated with 4 novel psychoactive substances: 1-benzylpiperazine, mephedrone (4-methylmethcathinone), synthetic cannabinoid receptor agonists, and methoxetamine.


Assuntos
Psicotrópicos/efeitos adversos , Psicotrópicos/toxicidade , Animais , Antagonistas de Receptores de Canabinoides/efeitos adversos , Antagonistas de Receptores de Canabinoides/toxicidade , Cicloexanonas/efeitos adversos , Cicloexanonas/toxicidade , Cicloexilaminas/efeitos adversos , Cicloexilaminas/toxicidade , Europa (Continente) , Humanos , Metanfetamina/efeitos adversos , Metanfetamina/análogos & derivados , Metanfetamina/toxicidade , Piperazinas/efeitos adversos , Piperazinas/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...